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Abstract. Link prediction, or the inference of future or missing
connections between entities, is a well-studied problem in network
analysis. A multitude of heuristics exist for link prediction in ordinary
networks with a single type of connection. However, link prediction in
multiplex networks, or networks with multiple types of connections, is
not a well understood problem. We propose a novel general framework
and three families of heuristics for multiplex network link prediction
that are simple, interpretable, and take advantage of the rich connec-
tion type correlation structure that exists in many real world networks.
We further derive a theoretical threshold for determining when to use
a different connection type based on the number of links that overlap
with an Erdős-Rényi random graph. Through experiments with simu-
lated and real world scientific collaboration, transportation and global
trade networks, we demonstrate that the proposed heuristics show
increased performance with the richness of connection type correla-
tion structure and significantly outperform their baseline heuristics
for ordinary networks with a single connection type.

1 Introduction

Networks are powerful representations of interactions in complex sys-
tems with a wide range of applications in biology, physics, sociology,
engineering and computer science. Modeling interactions between
entities as links between nodes in a graph allows us to leverage formal
methods to understand influence, community structure and other pat-
terns, make predictions about future interactions and detect unusual
activity. The study of networks and their applications has thus become
a major focus of many scientific disciplines in recent decades.

Since the advent of large-scale online social networks, the link pre-
diction problem [18] has received increased attention. Link prediction
is usually defined in terms of the following two interrelated problems:

• Given a current snapshot of a network at the present time, what
new connections are likely to develop in the future?

• Given an incomplete network, what connections are likely to be
actually present but missing from the graph?

Link prediction has numerous applications including social network
recommendation systems for new friends or individuals to follow [23],
predicting protein and metabolic interactions in biological networks
[26], finding experts and predicting collaborations in scientific co-
authorship networks [18], identifying hidden interactions of criminal
organizations [6] and predicting future routes in transit systems [19].

Most of the existing link prediction literature focuses on ordinary
networks which represent a single type of interaction between entities.
In many complex systems, however, we observe multiple types of
interactions. For example, individuals may interact using multiple
social networks and cities and transit stations may be linked via
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different carriers, lines or modes of transit. In order to apply standard
techniques, these multiple interactions must either be conflated to a
single type, which is not appropriate if they are sufficiently dissimilar,
or the analysis must be restricted to only one type of interaction. This
is limiting since conflation restricts our ability to predict the type of
future or missing interactions while using only a single interaction
type fails to leverage additional useful information gleaned from other
types of interactions in the network.

Multiplex networks are graphical structures that can represent multi-
ple types of interactions between entities [17]. In multiplex networks,
connections between entities occur at a layer of the network, which
represents a specific interaction type. These networks can be visu-
alized as either a single graph with multiple edge types or a set of
ordinary (single-layer or monoplex) graphs with the same nodes but
different edges, each corresponding to a different layer. Figure 1 de-
picts a multiplex network representing 3 types of interactions among
9 entities. In this example, X and V are connected in layer 1, which
might correspond to a specific social network, but are not connected
in the other layers, which might correspond to other social networks.
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Layer 3
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R

Figure 1. Multiplex network with 3 layers and 9 nodes

While interest in multiplex networks has grown across communi-
ties and there is prior work investigating centrality and community
structure [17, 15], there is limited existing work on link prediction.
In contrast to the multitude of simple heuristics for link prediction
in ordinary networks, which have been thoroughly investigated em-
pirically [18] and theoretically [24], we are not aware of any general
heuristics for link prediction at specific multiplex network layers.

We propose a novel general framework and three families of heuris-
tics for link prediction in multiplex networks which take advantage
of strong cross-layer correlation structure, which has been observed
in many real-world complex systems [22]. We show that the per-



formance of the proposed heuristics increases with the strength of
cross-layer correlations and they outperform their baseline heuristics
in synthetically generated and real world multiplex networks.

2 Background
We represent an ordinary undirected graph as G = 〈V, E〉, where V
is a set of nodes and E a set of edges. Distinct nodes v, v0 ∈ V are
neighbors if they are connected by an edge in E ; otherwise, they are
non-neighbors.N (v) represents the set of neighbors of v ∈ V . The
degree of a node is the cardinality of its neighbors set. A path between
u,w ∈ V is an ordered set 〈v1, . . . , vn〉 ⊂ V such that u ∈ N (v1),
w ∈ N (vn) and for 1 ≤ i < n, vi ∈ N (vi+1). We restricted our
analysis to undirected graphs in this paper.

2.1 Link Prediction in Single-Layer Networks
[18] provides the first comprehensive introduction to and analysis of
the link prediction problem. Recent surveys include [19] and [20].

Link prediction is often posed as a ranking problem where pairs of
non-neighbors are scored according to the predicted likelihood of a
future or missing connection and the top k highest scoring pairs are
selected. It can also be posed as a binary classification problem where
the class of a pair of nodes is whether or not a link exists.

The most extensively studied link prediction techniques are based
on similarity heuristics, which score pairs of nodes according to
topological features of the network related to coherent assumptions
about their similarity [20]. Most similarity heuristics are adapted from
techniques from graph theory and social network analysis [18]. We
define and discuss some of the most common heuristics below. A
more comprehensive list is provided in [20].

Neighbor-based heuristics are based on the idea that a link is most
likely to exist between nodes v and v0 whose sets of neighbors sig-
nificantly overlap. This property has been empirically observed in
real world networks [21]. The heuristic which most directly imple-
ments this concept is Common Neighbors (CN), which is simply the
cardinality of the intersection of neighbor sets [21]:

CN (v, v) =
��N (v) ∩N

�
v0
���

A related measure is the Jaccard Coefficient (JC), which is the ratio
of this intersection to the union of the neighbor sets:

JC
�
v, v0

�
=
|N (v) ∩N (v0)|
|N (v) ∪N (v0)|

Resource Allocation (RA) and Adamic-Adar (AA) [1] score links in-
versely proportional to the number of neighbors of each common
neighbor of two nodes:

RA
�
v, v0

�
=

X
u2N (v)\N (v0)

1

|N (u)|

AA
�
v, v0

�
=

X
u2N (v)\N (v0)

1

log |N (u)|

Preferential Attachment (PA), adapted from the Barabási-Albert net-
work growth model [3], is the product of node degrees [4]:

PA
�
v, v0

�
= |N (v)| ×

��N �v0���
The Product of Clustering Coefficient (PCC) scores the likelihood of
a link proportional to the product of the nodes’ clustering coefficients,

or number of links between nodes that are neighbors proportional to
the total possible links between those nodes:

PCC
�
v, v0

�
=

Y
w2fv;v0g

2 |{u, u0 ∈ N (w) : u0 ∈ N (u)}|
|N (w)| (|N (w)| − 1)

These heuristics are simple, interpretable, computationally efficient
and highly parallelizable. Their primary disadvantage is they do not
consider paths between nodes without common neighbors [20].

Path-based heuristics consider all paths between nodes. The Katz
Score (KS) sums over all paths between two nodes and applies expo-
nential dampening according to path lengths for specified β [16]:

KS
�
v, v0

�
=

X
p2paths(v;v0)

βjpj

Smaller β values result in a heuristic similar to neighbor-based ap-
proaches. Rooted PageRank (RPR), based on the PageRank measure
for website authoritativeness [8], is defined as the stationary prob-
ability that a random walk from v to v0 with probability 1 − α of
returning to v and otherwise moving to a random neighbor reaches v0,
represented as [πv]v0 [25]:

RPR
�
v, v0

�
= [πv]v0 + [πv0 ]v

While comprehensive studies of link prediction have focused
on unsupervised prediction using these heuristics, supervised and
optimization-based approaches have also been considered. Most of
these use similarity heuristics as features, sometimes with additional
information, to train a classifier [2, 11] or learn a weighting function
[7]. Empirical studies have found simple neighbor-based heuristics
often perform as well or better than more complex methods [20, 18].
There are some theoretical justifications for their success [24].

2.2 Multiplex Networks
For decades, different disciplines have proposed systems which orga-
nize different types of connections between entities, but only recently
have there been significant efforts to develop general frameworks for
studying networks with multiple layers or types of connections [17].
This increased interest has resulted in disparate terminology and for-
mulations of multiplex networks and related network representations.

One popular formulation of multiplex networks is a graph with
multiple edge types which each correspond to different layers. We can
represent a multiplex network as G = 〈V, E , T 〉 where T is a set of
edge types and each edge in E is between v, v0 ∈ V and of type t ∈ T .
Other formulations allow for different node sets and edges which
cross layers [9], sometimes referred to as heterogeneous networks. In
our setup, edges are always within the same layer and node sets are
common across layers. We can thus equivalently represent a multiplex
network as a set of graphs with the same node set, where each graph
represents a different layer in the network, e.g. G = 〈G1, . . . ,Gk〉.

3 Multiplex Network Link Prediction Heuristics
The framework we propose for specifying heuristics for link predic-
tion in multiplex networks is inspired by the rich connection type
correlation structures that have been empirically observed in many
real world complex systems [22]. We provide a general approach to
defining heuristics in terms of topological features across layers of
a multiplex network weighted according to this structure. The moti-
vation for this approach is that real world multiplex networks often



contain sets of layers which are highly (positively or negatively) corre-
lated but many pairs of layers which are not strongly correlated. When
predicting links at a given layer, we would like to take advantage of
structural information from other layers which are highly correlated,
but ignore layers where correlations are weak.

3.1 Cross-Layer Correlation
First, we define correlation between multiplex network layers. Pre-
vious work comparing layers primarily considers layer similarity in
terms of shared edges and hubs (high degree nodes) [9, 22]; however,
for specific problems, it may be appropriate to consider higher-order
structural features [5], e.g. shared triangles, or other contextual infor-
mation. Our framework is general enough that it can be adapted to the
specific needs of a particular application, allowing the specification
of both relevant features and metrics used to define correlation.

As an initial step, we define a property matrix, following [9], for a
multiplex network which specifies the relevant features to consider
cross-layer correlation in terms of. For example, to calculate cross-
layer correlation in terms of shared edges, we construct the following
property matrix P for the multiplex network depicted in Figure 1:

X − Y X − U X − V"Layer 1 1 1 1 . . .
P = Layer 2 1 1 0 . . .

Layer 3 1 0 0 . . .

Rows in P represent layers, and columns represent unique node pairs.
Entries of 1 or 0 indicate the presence or lack of an edge, respectively.
Similarly, to compare layers in terms of shared hubs, we make the
columns represent nodes and have the entries indicate the node degree
in each layer. For a property matrix P we use pi to indicate the
property vector for the ith layer and pi

j the value in the jth column
for layer i. By convention, all vectors are treated as column vectors.
When property matrices/vectors are defined in terms of shared edges
or shared hubs, we refer to them as edge property matrices/vectors or
degree property matrices/vectors, respectively.

We next construct a cross-layer correlation matrix C from a k × x
property matrix P by setting the diagonal entries in C to 1 and the
off-diagonal entries ci;j to the value resulting from some correlation
metric applied to the property vectors pi and pj . For example, using
Pearson correlation we get the following for the off-diagonals, where
we represent the mean taken with respect to a property vector i as
�pi = 1

x

Px
j=1 p

i
j :

ci;j =

�
pi − �pi

�0 �
pj − �pj

�p
(pi − �pi)0 (pi − �pi) (pi − �pj)0 (pj − �pj)

While Pearson correlation is an appropriate metric for edge property
matrices, Spearman (rank-based) correlation is more appropriate for
degree property matrices since denser layers may have the same rank
ordering of hubs, but with different degrees. We focus on correlation
metrics as opposed to general distance metrics since they distinguish
positive from negative correlation, which has been observed in real
world networks and which we account for in our proposed heuristics.

3.2 Multiplex Network Heuristics
We now propose three multiplex network heuristics which use cross-
layer correlation structure to weight features observed across layers.
Each are defined in terms of a specified cross-layer correlation matrix

C, allowing for the use of any property matrix and correlation metric.
First, we define the following normalization for a layer i and C:

Zi
C =

kX
l=1

|ci;l| .

The first and simplest heuristic, Count and Weight by Correlation
(CWC), counts the number of layers which contain a link between two
nodes and weights that count according to the cross-layer correlations.

Heuristic 1 (Count and Weight by Correlation). Let G =
〈G1, . . . ,Gk〉 be a multiplex network with edge property vectors
e1, . . . , ek and cross-layer correlation matrix C. CWC is defined
for a layer i and a possible edge represented by an edge property
vector index j as follows:

1

Zi
C

kX
l=1

(
ei

jci;l, ci;l > 0�
1− ei

j

�
|ci;l| , ci;l < 0

For example, to consider a link in the multiplex network in Figure 1
between X and V at layer 2 using CWC, we would proceed with the
following calculation (assuming only positive correlations):

1

Z2
C

(1× c2;1 + 0× c2;3)

Only c2;1 receives weight in the numerator since X and V are con-
nected in layer 1 but not in layer 3.

CWC encodes the intuition that correlated layers should have sim-
ilar links: the more correlated a layer which does not contain a par-
ticular link is to another layer which does contain that link, the more
likely it is that link is missing or will develop in the future. CWC
also takes anti-correlation into account: a link is more likely to be
predicted if it is missing from a layer which is anti-correlated. Despite
its simplicity, this heuristic performs extremely well in practice.

The second heuristic, Correlation Weighted Heuristic (CWH), ex-
tends the heuristics discussed in the previous section to the multiplex
domain by applying them across layers of a multiplex network and
weighting them according to cross-layer correlations. While empirical
studies have found that no particular monoplex heuristic consistently
outperforms all others [18], there may be problem-specific reasons
to prefer a particular heuristic. For example, if we know there are
few long paths between nodes, a neighbor-based heuristic is likely to
perform at least as well as a path-based heuristic at a lower computa-
tional cost. Taking this into consideration, CWH allows any monoplex
heuristic to be extended to multiplex networks.

Heuristic 2 (Correlation Weighted Heuristic). Let G = 〈G1, . . . ,Gk〉
be a multiplex network with cross-layer correlation matrix C. Let hl

j

be a heuristic for monoplex networks evaluated at layer l of G for a
possible edge represented by an edge property vector index j. Then,
CWH is defined for a layer i and possible edge index j as follows:

1

Zi
C

kX
l=1

(
hl

jci;l, ci;l > 0�
1− hl

j

�
|ci;l| , ci;l < 0

For example, to consider a link in the multiplex network in Figure 1
between X and V at layer 2 using CWH with Common Neighbors
as the monoplex heuristic, we would proceed with the following
calculation (assuming only positive correlations):

1

Z2
C

�
CN1 (X,V )× c2;1 + CN2 (X,V ) + CN3 (X,V )× c2;3

�



CWH is similarly based on the intuition that since existing monoplex
heuristics have been shown to be predictive of missing and future
links in single-layer networks, they should also be predictive in corre-
lated layers of multiplex networks and this predictive power should
increase based on the magnitude of correlations. Like CWC, CWH
takes anti-correlation into account: links are more likely to be pre-
dicted if they are not strongly predicted by a monoplex heuristic in
an anti-correlated layer. In our definition, we assume the monoplex
heuristic h is normalized to be within 0 and 1.

The third heuristic combines the previous two ideas. For a given a
monoplex heuristic, Count Correlation-Weighted Heuristics (CCWH)
counts the number of layers which contain a link between two nodes
and weights that count according to both cross-layer correlations and
the values resulting from evaluating the monoplex heuristic at each
layer in the network.

Heuristic 3 (Count Correlation-Weighted Heuristics). Let G =
〈G1, . . . ,Gk〉 be a multiplex network with edge property vectors
e1, . . . , ek and cross-layer correlation matrix C. Let hl

j be a similar-
ity heuristic for monoplex networks evaluated at layer l of G for a
possible edge represented by an edge property vector index j. Then,
CCWH is defined for a layer i and possible edge index j as follows:

1

Zi
C

kX
l=1

8><>:
hi

j , i = l

ei
jh

i
jci;l, ci;l > 0�

1− ei
j

� �
1− hi

j

�
|ci;l| , ci;l < 0

CCWH also accounts for negative correlation: links are more likely if
they are not present in an anti-correlated layer and the magnitudes of
these predictions are inversely proportional to the values of the heuris-
tic evaluated at that layer. We also include the heuristic evaluated at
the layer being predicted so that CCWH yields informative values
even when there are no layers containing the edge being predicted.

3.3 Expected Overlap Threshold for Layers

One potential issue with using cross-layer correlation as weights in
the proposed heuristics is the sensitivity of many correlation metrics
to sample size error. When layers are not related, we may still observe
small correlation values which add noise. This may be particularly
acute when networks have small numbers of nodes but many lay-
ers. To improve empirical performance in such cases, we propose a
thresholding method to ignore layers likely to only add noise.

One possibility is to simply ignore small values of correlation,
but there is no clear guideline for setting the threshold for values to
ignore. Instead, we propose a threshold for excluding layers based
on properties of the two graphs being compared. If two graphs are
related, especially in the context of link prediction, we expect them to
have edges in common. Thus, we should expect that a layer l used for
predicting a link at another layer i has at least as many overlapping
edges with i as a random graph. However, graphs with many edges
are more likely to have overlapping edges so we should only consider
random graphs with the same number of edges as the layer for which
we are predicting links. The Erdős-Rényi Gn;m random graph model
[14], which uniformly considers all undirected graphs with n nodes
and m edges. provides a theoretical framework for this comparison.
Let Gi be an observed layer with n nodes and mi edges at which we
would like to predict links and let Gl be some other layer with ml

edges. We define the expected number of overlapping edges (OE) in
terms of the cosine distance between the edge property vector pi for
Gi and the edge property vector pj for a random graph withmj = ml

edges generated according to the Erdős-Rényi random process:

E
�
OE(Gi,mj)

�
= E

 
pi0pjp

pi0pipj 0pj

����� Gi,mj

!
To evaluate this quantity, we need the following lemma.

Lemma 1. Let G = 〈V, E〉 be a graph with n nodes, m edges and
edge property vector p that is generated according to an Erdős-Rényi
Gn;m random graph process. Then, for 1 ≤ i ≤ n(n�1)

2
,

E (pi |m) =
2m

n(n− 1)

Proof. During the kth step of an Erdős-Rényi random process, the
probability that a non-neighbor tuple v, v0 ∈ V is not selected is

n(n�1)
2
− k

n(n�1)
1
− k + 1

Therefore,

E (pi |m) = (0)P (pi = 0 |m) + (1)P (pi = 1 |m)

= P (pi = 1 |m)

= 1− P (pi = 0 |m)

= 1−
mY

k=1

n(n�1)
2
− k

n(n�1)
2
− k + 1

= 1−
n(n�1)

2
−m

n(n�1)
2

=
2m

n(n− 1)

Theorem 1. Let Gi = 〈V, Ei〉 be an observed graph with n nodes,
mi edges and edge property vector pi and Gj = 〈V, Ej〉 a graph
generated from an Erdős-Rényi Gn;mj random process with edge
property vector pj . Then,

E
�
OE(Gi,mj)
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√
mimj

n(n− 1)

Proof.
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n(n− 1)

=
2
√
mimj

n(n− 1)



The expected overlapping edges can be calculated whenever an-
other layer is considered when evaluating a heuristics at a layer i
and ignored if the observed cosine distance between that layer’s edge
property vector and the edge property vector for layer i is less than
this quantity. However, we might also wish to consider only layers
that are several standard deviations from a random graph. We thus
need the following lemma to evaluate the second moment.

Lemma 2. Let G = 〈V, E〉 be a graph with n nodes, m edges and
edge property vector p generated according to an Erdős-Rényi Gn;m

random graph process. Then, for 1 ≤ i, j ≤ n(n�1)
2

such that i 6= j,

E (pipj |m) =
4m(m− 1)

n(n− 2)(n2 − 1)

Proof. First note that

m2 = E
�
m2� = E

0B@
264

n(n�1)
2X

i=1

pi

375
264

n(n�1)
2X

j=1

pj

375
�������m
1CA

=

n(n�1)
2X

i=1

n(n�1)
2X

j=1

E (pipj |m)

=

n(n�1)
2X

i=1

E
�
(pi)

2
��m�+

n(n�1)
2X

j;i=1s:t:j 6=i

E (pipj |m)

=

�
n(n− 1)

2

��
2m

n(n− 1)

�
+

�
n(n− 1)

2

��
n(n− 1)

2
− 1

�
E (pipj |m)

= m+
n2(n− 1)2 − 2n(n− 1)

4
E (pipj |m)

Factoring yields

E (pipj |m) =
4m(m− 1)

n(n− 2)(n2 − 1)

Theorem 2. Let Gi = 〈V, Ei〉 be an observed graph with n nodes,
mi edges and edge property vector pi and Gj = 〈V, Ej〉 a graph
generated from an Erdős-Rényi Gn;mj random process with edge
property vector pj . Then,
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Proof. Partition the indices 1, . . . , n(n�1)
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The variance then follows as:

2n(n− 1)− 4mimj

n2(n− 1)2
+

4
�
mi − 1

� �
mj − 1

�
n(n− 2)(n2 − 1)

4 Experiments
We first evaluated each of the multiplex network heuristics proposed
in the previous section on synthetically generated multiplex networks
with varying numbers of nodes, layers and magnitudes of cross-layer
correlation. To generate random multiplex networks, we begin by
generating random graphs for each layer using the Barabási-Albert
random graph generating model, which incorporates the preferential
attachment and “rich get richer” properties that characterize many real
world networks [3]. Then, for each node pair in each layer, we add
or remove the corresponding edge according to whether it exists at a
randomly chosen layer with a specified probability calibrated to match
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Figure 2. Accuracy of the proposed multiplex heuristics and monoplex baselines on synthetic networks with 100 nodes, 10 layers and median cross-layer
correlations between 0.10 and 0.90. Larger values indicate higher accuracy.

a desired value for median cross-layer correlation (in terms of shared
edges). For each random network, we then downsample the edges
at each layer by 25% and evaluate each of our proposed multiplex
heuristics for all node pairs at which no link exists. We predict links for
the top x scoring pairs corresponding to the number of edges removed.
We do this for each layer and average over 100 random networks
the percentage of correctly predicted links (predicted edges that were
removed during downsampling), which we report as accuracy. We
compare the three proposed heuristics to baselines where we evaluate
the corresponding monoplex heuristics at the layer being predicted.
We plot accuracy against median cross-layer correlation for synthetic
networks with 100 nodes and 10 layers in Figure 2. We append ’e’ and
’d’ to the abbreviations of multiplex heuristics to indicate the usage
of edge or degree property matrices when calculating cross-layer
correlations.

We first note that both CWC and CCWH significantly outperform
all of the baseline monoplex heuristics when cross-layer correlation
structure is present, and this outperformance increases linearly with
median cross-layer correlation. For the neighbor-based heuristics,
CWC, the simplest heuristic, either performs comparable to or better
than CCWH, while for the path-based heuristics, CWC and CCWH
perform comparably. This is consistent with the finding in [18] that
simpler heuristics often outperform more complex heuristics in the
single-layer case. Furthermore, while CWC is the simplest of the
three heuristics, it also most directly captures the richest source of
information available when layers are correlated, i.e. whether the edge
exists in a highly correlated layer. Thus, in this context, the outperfor-
mance of CWC is not surprising. While CWH also outperforms all
of the baseline monplex heuristics (not always significantly) the out-
performance does not increase with median cross-layer correlations
when neighbor-based heuristics are used. This seems to indicate the
heuristics applied at additional layers provides limited value when
not combined with additional layer specific information, even when
cross-layer correlations are significant. However, when path-based
heuristics are used, the performance of CWH does increase with me-
dian cross-layer correlation indicating the path-based heuristics do

pick up on increasingly useful information as cross-layer correlations
increase. We observe similar performance when we vary the nodes
between 10 and 100 and layers between 5 and 50. In general there
is a slight performance increase with more layers, but the increase is
minimal once median layer correlation reaches approximately 0.50.

We also evaluated the proposed heuristics on three real world multi-
plex networks using the same procedure where we downsample edges:
a scientific collaboration network with 16 layers representing collab-
oration on different tasks among 514 scientists at the Pierre Auger
Observatory, the largest observatory of ultra-high-energy cosmic rays
[12], an airline transportation network with 37 layers representing
different European airline carriers’ direct routes between 450 airports
[10] and an economic global trade network from the United Nations
Food and Agriculture Organization with 364 layers representing im-
port/export relations for a particular food item among 214 countries
[13]. We show the cross-layer correlation matrices for the edge and
degree property matrices in Figure 3, which indicate strong correla-
tion structure, particularly in the case of the UN FAO trade network.
Given this strong correlation structure, we should expect the multiplex
network heuristics to outperform their monoplex heuristic baselines.
For each network, we provide accuracy as a heat map comparing the
corresponding monoplex heuristic baselines to each of the proposed
multiplex heuristics as columns in Figure 4.

We first note that CWC significantly outperforms all of the mono-
plex heuristic baselines on all of the real-world networks, consistent
with the performance seen in the simulations. CWH and CCWH also
either perform better than or the same as each baseline in the airline
and trade networks, while their performance is in general similar to
their baselines in the collaboration network. We note, however, that in
the collaboration network, the baseline performance is already quite
high and this network exhibits the weakest correlation structure of
these real world networks. Performance is most consistent with the
simulations in the trade network, where we see strong outperformance
for all of the multiplex heuristics, with the outperformance most sig-
nificant for CWC and CCWH. We note that this network contains
both the most layers and the richest cross-layer correlation structure,




