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Motivation Visualization

® Diabetes is a group of metabolic diseases in which there are high blood sugar levels over a
prolonged period.

® Globally, in 2013, an estimated 344 million people have type 2 diabetes (T2D) [1].

® This is equal to 8.3% of the adults population, with equal rates in both women and men.

® Most symptoms of type 2 diabetes are not expressed aggressively and hence millions of
patients remain undiagnosed for sustained periods of time.
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for the BMI variable. Trends for the glucose variable.
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® Health care providers and drug companies have an interest in identifying and treating these
subjects before they develop full-blown diabetes.

® \We would like to transform healthcare into heterogeneous and big data driven analytics for
precise diagnosis and treatment

Experimental Results

Problems
® \Ve then selected the 5000 patients which were most observation rich over our features.
® Can we identify patients that are T2D positive from EMR data? ® Various ML classifiers were used such as SVM, logistic regression, and random forests.
® How long prior to diagnosis can we accurately predict T2D? e AUC scores are shown using 10-fold cross validation.

® Prediction task consisted of data upto one and two years of diagnosis date.

Pr lution . . .
oposed Solutio ® 7 features corresponding to BMI, systolic/diastolic blood pressure, A1C, creatinine,
triglycerides and HDL.

We would like to use EMR data which routinely includes information such as age, BMI and | | | | o o
® Derived features from the time-series — maximum, minimum, mean, standard deviation.

vlood pressure to obtain the likelihood that one is going to develop diabetes.
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4' ® AUC scores for logistic regression forecast at 0,365 and 730 days.
® Half million subjects with training set being 10 percent of the total number of subjects.
Preprocessing Logistic regression since it gave good performance on dataset of 10000 subjects.
We deployed a 2 TB of EMR dataset on Hive (SQL + Hadoop) with around 33 million Classitier 0 days |1year 2 years

subjects. To obtain positive and negative patients, we use the following criteria:

Logisitic Regression 0.82 0.72 0.74

Positive patients

® Active problem instance of T2D ICD-9 codes

. L . . . - Future work
® Also require non-insulin anti-diabetic medication usage if Diabetes type unspecified

® Explicitly exclude subjects who are on Insulin | ® Experiment with other methods such as [2], [3] to see if we can get better performance.

This resulted in 867, 700 positive patients. ® Predict T2D development in early stages by identifying patterns that lead to the disease

Negative patients development.

® Exclude subjects who received any anti-diabetic medications
® Exclude subjects who have any diabetes ICD-9 code (250.x) Acknowledgments

® Exclude subjects who have A1C values greater than 6 or glucose greater than 200
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® Finally, exclude subjects who have one glucose value greater than 100

This gave us 3, 056, 666 negative subjects. We create two datasets for our experiments as References
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